Ants

High performance agent-based
modeling and visualization with Rust,
WebAssembly, and WebGL

Casey Primozic



Overview

Originally started as a game engine at
the beginning of last summer, but
spiraled off into a lot of other things
along the way.

Model of computation similar to Turing
Machines, Cellular Automata, Stack
Machines, etc.



https://github.com/ameobea/minutiae

Agent-Based Modeling

Immutable State
Strictly Controlled




Minutiae System Architecture

Representation of state and logic
Allows for the creation of “simulations,
“demos,” and interactive applications
Deterministic + Nondeterministic
variants

Serial / Parallel

Runs in the browser via WebAssembly/
Asm.JS

/4




Universe

2-dimensional array of cells

Always square (equal height + width)
Populated with cells and entities at
application initialization using a
Generator




Cells

Cells
Every coordinate of the universe
contains a cell
Contain generic state
Do nothing by themselves
Roughly equivalent to a Turing
Machine’s tape




Entities

Exist in a single coordinate within the
universe
Have two kinds of state

State

Mutable State




Entity States

Non-mutable State
Fully generic (only limited by some
Rust traits to enable safe program
execution)
Visible to all other entities in the
universe (unless limited by the entity
driver explicitly)
Well represented by Rust’s fat enums
Only changeable by the Engine or
Middleware




Mutable Entity State

Not visible to other entities in the
simulation

Mutable by the entity driver during its
evaluation

Useful for storing stuff like PRNG state
Generic, but with strict limitations on its
contents using Rust state in order to
preserve performance




Computation Model

State (data)
Logic (rules)




Minutiae Computation Model

State located in 3 places:
Universe/cells
Entity state
Mutable Entity State
Logic located in 3 places:
Entity Driver
Engine
Middleware




Entity Driver

Function that takes the universe (all cells
and entities) as input and returns an
array of actions as output

Evaluated for every entity in the
universe each tick




Actions

Enum of possibilities
Creatable by entities during execution of
the simulation
Three varieties
Cell Actions
Self Actions
Entity Actions

)



Engine

Defines a set of rules for processing
actions
Defined by the user




Engine cont.

Defines rules for handling the actions
created by entities
Implemented as a (generic) trait

pub fn exec_actions(
universe: &nut Universe<CS, ES, MES, CA, EA>, cell_actions: &[OwnedAction<CS, ES, CA, EA>],
self_actions: &[OwnedAction<CS, ES, CA, EA>], entity_actions: &[OwnedAction<CS, ES, CA, EA>]

) {
for cell_action in cell_actions { exec_cell_action(cell_action, &mut universe.cells, &nut universe.entities); }
for self_action in self_actions { exec_self_action(self_action, &mut universe.entities); }

for entity_action in entity_actions { exec_entity_action(entity_action, &mut universe.entities); }




Serial Engine

Executes the entity driver for each entity
In the universe one by one
Stores up all generated actions in an
array
Handles all of the actions one by one,
transitioning state sequentially
Handles conflicts e.q. (if an action
targets an entity that moved or was

deleted)

y



Parallel Engine

Entity driver for each entity is run in
parallel

Work stealing parallel iterator is used
along with synchronization primitives to
create a vector of actions to evaluate




Parallel Engine cont.

Made possible by separating the
creation of actions from their evaluation
The entire universe (all cells and entities)
are immutable during this phase
If they weren't, there would be the
possibility of all kinds of parallel
Issues to crop up
Required copious usage of unsafe Rust
code




Parallel Engine Cont.

Any possible determinism is lost
No guarantee to the ordering of the
evaluation of actions
(Theoretically) linear efficiency gains for
the entity driver phase
Engine’s evaluation of actions is not
parallelizable
Requires mutable access to the
universe and entities




Middleware

Take all of the bounds off the system
Allow direct, mutable access to the
entire universe before and after each
tick

Allow mutation of cell states, access to
universe state for output, etc.




Middleware Examples

MinDelay: If the time between the
current frame and the previous frame is
less than an interval, sleeps until that
Interval is reached
TracerMiddleware: Alters the state
of the cells under which entities exist to
leave a trace of the entity’s color that
persists after the entity moves. This
fades over time.




Driver

Actually executes the simulation

Calls entity drivers, processes actions,
executes middleware

Can be used to execute in asynchronous
environments (Emscripten via browser
event loop)




Overview of Simulation Process

Cells hold data in a 2D array

Entities live on top of cells and make
decisions (generate actions)

Engine processes actions and mutates
cellst+entities

Middleware breaks the rules and allows
for side effects

Driver makes everything happen




Output + Visualization

A 2D universe is conveniently displayed
In a lot of ways

Can be treated as an array of pixels in an
Image or video




About Rust

Low level language, like C/C++
Enforces memory safety and (almost)
always prevents things like
use-after-free, dangling pointers, etc.
Powerful type system with generics,
traits, smart pointers, full control of
memory.




So what can you do with it?




WebAssembly

Multi-architecture support for free
Near native performance (or better) for
countless work domains

Pretty new, only an MVP right now (but
very widely supported nonetheless)
Really, really cool




Rendering to a Canvas or GIF

Middleware is created to calculate the

color of each coordinate in the universe
Takesa calc_color function which
takes a cell state and list of all
entities at that cell and returns a
color




Try it out yourself, right now!



https://ants.ameo.design/

About the Model

Independently functioning entities (ants)
communicate and cooperate to
accomplish a goal (collecting food)
Very limited information available
O cells adjacent + beneath them
Offset from the hive (conditionally -
will explain in a bit)

A



Implementation (pheromones)

Two kinds of pheromones (Cell State):
“Wandering” trail (looking for food)
Report trail (bringing back / reporting a
found food source)




Implementation (ant logic)

Three different states ants can be in:

“Wandering” - looking for previously
undiscovered food sources
“Reporting” - Leaving a trail to a known
food source

“Following” - Following a previously
known trail to a food source




Cell State

Blank
Pheromone Levels
Food
Barrier
Anthill




Entity State

Ants only know the following information
on which they base all of their decisions:

State of the 9 cells adjacent to and

beneath them
Conditionally, their offset (in cells) from

the anthill
As limited as possible




World Generation

Very simple worldgen

All entities spawn on the same cell on
frame 1

Barriers and food patches generated
according to configuration values




Real Ants

Pretty smart tbh

Counting steps

Visual memory

Teach each other
Very complicated chemical
messaging systems




Goal

Exhibit the “ant-colony optimization”
Swarm Intelligence
Optimization, solving NP-hard
problems
Gradient Descent + Machine
Learning
Finding the optimal parameters for this
model would be a great use of that




Results

Mostly successful!

Swarm Intelligence is clearly exhibited
Ants make use of information gathered
by other ants indirectly by reading
pheromones, contributing to it in the
process




Results cont.

Several inefficiencies and issues
Ants get “stuck” a lot, especially on
their trip back to the anthill
Naive pathing algorithm
Somewhat clunky and abstruse Ul




Future Work

My very own personal Internet Ant
colony
Economic aspects

Birth of ants, regrowth of food
Better / more elaborate worldgen
More advanced chemical messaging
systems




Open Source is Nice

Check out the source codel!



https://ameo.link/ants

Thanks for
Listening!




