
Ants
High performance agent-based

modeling and visualization with Rust,
WebAssembly, and WebGL

Casey Primozic

Overview

› https://github.com/ameobea/minutiae
› Originally started as a game engine at

the beginning of last summer, but
spiraled off into a lot of other things
along the way.

› Model of computation similar to Turing
Machines, Cellular Automata, Stack
Machines, etc.

1

https://github.com/ameobea/minutiae

Agent-Based Modeling

› Immutable State
› Strictly Controlled

Minutiae System Architecture

› Representation of state and logic
› Allows for the creation of “simulations,”

“demos,” and interactive applications
› Deterministic + Nondeterministic

variants
› Serial / Parallel
› Runs in the browser via WebAssembly/

Asm.JS

Universe

› 2-dimensional array of cells
› Always square (equal height + width)
› Populated with cells and entities at

application initialization using a
Generator

2

Cells

› Cells
› Every coordinate of the universe

contains a cell
› Contain generic state
› Do nothing by themselves
› Roughly equivalent to a Turing

Machine’s tape

3

Entities

› Exist in a single coordinate within the
universe

› Have two kinds of state
› State
› Mutable State

4

Entity States

› Non-mutable State
› Fully generic (only limited by some

Rust traits to enable safe program
execution)

› Visible to all other entities in the
universe (unless limited by the entity
driver explicitly)

› Well represented by Rust’s fat enums
› Only changeable by the Engine or

Middleware

Mutable Entity State

› Not visible to other entities in the
simulation

› Mutable by the entity driver during its
evaluation

› Useful for storing stuff like PRNG state
› Generic, but with strict limitations on its

contents using Rust state in order to
preserve performance

Computation Model

› State (data)
› Logic (rules)

Minutiae Computation Model

› State located in 3 places:
› Universe/cells
› Entity state
› Mutable Entity State

› Logic located in 3 places:
› Entity Driver
› Engine
› Middleware

Entity Driver

› Function that takes the universe (all cells
and entities) as input and returns an
array of actions as output

› Evaluated for every entity in the
universe each tick

5

Actions

› Enum of possibilities
› Creatable by entities during execution of

the simulation
› Three varieties

› Cell Actions
› Self Actions
› Entity Actions

6

Engine

› Defines a set of rules for processing
actions

› Defined by the user

Engine cont.

› Defines rules for handling the actions
created by entities

› Implemented as a (generic) trait

Serial Engine

› Executes the entity driver for each entity
in the universe one by one

› Stores up all generated actions in an
array

› Handles all of the actions one by one,
transitioning state sequentially
› Handles conflicts e.g. (if an action

targets an entity that moved or was
deleted)

7

Parallel Engine

› Entity driver for each entity is run in
parallel

› Work stealing parallel iterator is used
along with synchronization primitives to
create a vector of actions to evaluate

8

Parallel Engine cont.

› Made possible by separating the
creation of actions from their evaluation

› The entire universe (all cells and entities)
are immutable during this phase
› If they weren’t, there would be the

possibility of all kinds of parallel
issues to crop up

› Required copious usage of unsafe Rust
code

Parallel Engine Cont.

› Any possible determinism is lost
› No guarantee to the ordering of the

evaluation of actions
› (Theoretically) linear efficiency gains for

the entity driver phase
› Engine’s evaluation of actions is not

parallelizable
› Requires mutable access to the

universe and entities

Middleware

› Take all of the bounds off the system
› Allow direct, mutable access to the

entire universe before and after each
tick

› Allow mutation of cell states, access to
universe state for output, etc.

9

Middleware Examples

› MinDelay: If the time between the
current frame and the previous frame is
less than an interval, sleeps until that
interval is reached

› TracerMiddleware: Alters the state
of the cells under which entities exist to
leave a trace of the entity’s color that
persists after the entity moves. This
fades over time.

10

11

Driver

› Actually executes the simulation
› Calls entity drivers, processes actions,

executes middleware
› Can be used to execute in asynchronous

environments (Emscripten via browser
event loop)

12

Overview of Simulation Process

› Cells hold data in a 2D array
› Entities live on top of cells and make

decisions (generate actions)
› Engine processes actions and mutates

cells+entities
› Middleware breaks the rules and allows

for side effects
› Driver makes everything happen

Output + Visualization

› A 2D universe is conveniently displayed
in a lot of ways

› Can be treated as an array of pixels in an
image or video

13

About Rust

› Low level language, like C/C++
› Enforces memory safety and (almost)

always prevents things like
use-after-free, dangling pointers, etc.

› Powerful type system with generics,
traits, smart pointers, full control of
memory.

So what can you do with it?

WebAssembly

› Multi-architecture support for free
› Near native performance (or better) for

countless work domains
› Pretty new, only an MVP right now (but

very widely supported nonetheless)
› Really, really cool

Rendering to a Canvas or GIF

› Middleware is created to calculate the
color of each coordinate in the universe
› Takes a calc_color function which

takes a cell state and list of all
entities at that cell and returns a
color

Try it out yourself, right now!
https://ants.ameo.design

https://ants.ameo.design/

About the Model

› Independently functioning entities (ants)
communicate and cooperate to
accomplish a goal (collecting food)

› Very limited information available
› 9 cells adjacent + beneath them
› Offset from the hive (conditionally -

will explain in a bit)

Implementation (pheromones)

Two kinds of pheromones (Cell State):
› “Wandering” trail (looking for food)
› Report trail (bringing back / reporting a

found food source)

Implementation (ant logic)

Three different states ants can be in:
› “Wandering” - looking for previously

undiscovered food sources
› “Reporting” - Leaving a trail to a known

food source
› “Following” - Following a previously

known trail to a food source

Cell State

› Blank
› Pheromone Levels

› Food
› Barrier
› Anthill

Entity State

Ants only know the following information
on which they base all of their decisions:
› State of the 9 cells adjacent to and

beneath them
› Conditionally, their offset (in cells) from

the anthill
› As limited as possible

World Generation

› Very simple worldgen
› All entities spawn on the same cell on

frame 1
› Barriers and food patches generated

according to configuration values

Real Ants

› Pretty smart tbh
› Counting steps
› Visual memory
› Teach each other

› Very complicated chemical
messaging systems

Goal

› Exhibit the “ant-colony optimization”
› Swarm Intelligence
› Optimization, solving NP-hard

problems
› Gradient Descent + Machine

Learning
› Finding the optimal parameters for this

model would be a great use of that

Results

› Mostly successful!
› Swarm Intelligence is clearly exhibited
› Ants make use of information gathered

by other ants indirectly by reading
pheromones, contributing to it in the
process

Results cont.

› Several inefficiencies and issues
› Ants get “stuck” a lot, especially on

their trip back to the anthill
› Naïve pathing algorithm
› Somewhat clunky and abstruse UI

Future Work

› My very own personal Internet Ant
colony

› Economic aspects
› Birth of ants, regrowth of food

› Better / more elaborate worldgen
› More advanced chemical messaging

systems

Open Source is Nice

Check out the source code!
https://ameo.link/ants

https://ameo.link/ants

Thanks for
Listening!

